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SUMMARY

The fully non-linear free-surface flow over a semi-circular bottom obstruction was studied numerically in
two dimensions using a mixed Eulerian–Lagrangian formulation. The problem was solved in the time
domain that allows the prediction of a number of transient phenomena, such as the generation of
upstream advancing solitary waves, as well as the simulation of wave breaking. A parametric study was
performed for a range of values of the depth-based Froude number up to 2.5 and non-dimensional
obstacle heights, a up to 0.9. When wave breaking does not occur, three distinct flow regimes were
identified: subcritical, transcritical and supercritical. When breaking occurs it may be of any type:
spilling, plunging or surging. In addition, for values of the Froude number close to 1, the upstream
solitary waves break. A systematic study was undertaken to define the boundaries of each type of
breaking and non-breaking pattern and to determine the drag and lift coefficients, free-surface profile
characteristics and transient behavior. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The fully non-linear, free-surface, two-dimensional potential flow of an incompressible fluid
over a semi-circular bottom obstruction is analyzed. The flow, a sufficient distance ahead of
the obstruction, has a uniform velocity and depth. This problem may be described in terms of
two non-dimensional parameters. A depth-based Froude number is defined as FnUB/
g ·h,
where UB is the uniform upstream velocity, h is the uniform upstream depth and g is the
gravitational acceleration. The non-dimensional obstruction height is given as aR/h, where
R is the radius of the obstacle. The steady flow over an obstacle has been studied by a number
of investigators (Forbes [1], Forbes and Schwartz [2], Zhang and Zhu [3], Vanden-Broeck [4],
Houghton and Kasahara [5] and Lawrence [6]). The steady state response of the free-surface
can be typified into certain flow regimes depending on the upstream depth-based Froude
number and the non-dimensional obstruction height. These regimes have common free-surface
characteristics, and are depicted in Figure 1. Five distinct patterns for the free-surface behavior
at steady state have been identified. These are: subcritical, supercritical, partially blocked with
no lee (downstream) hydraulic jump, partially blocked with a lee hydraulic jump, and complete
blocking. Houghton and Kawahara [5] and Lawrence [6] developed equations defining the
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boundaries between the various flow regimes. In a recent study, Zhu and Zhang [7] formulated
the same problem in the time domain. However, due mainly to the absence of open boundary
conditions, they were able to obtain numerical results only for values of the Froude number
greater than 1.

While the steady models have been useful in identifying some key features of the fluid
problem, for certain speeds, even though the conditions are steady, the flow never reaches a
steady state. This is related to the generation of unsteady solitary waves propagating upstream
of the obstacle. This phenomenon occurs for a number of disturbances in a uniform flow, such
as a free-surface pressure distribution or a ship, and has been identified by a number of
authors. While Thews and Landweber [8] are credited with first mentioning this phenomenon,
systematic studies of this phenomenon are much more recent. Wu and Wu [9] used a
generalized Boussinesq model for long waves generated by a moving pressure or bottom
obstacle. The same phenomenon was studied using the Korteweg–de Vries (KdV) equation by
Akylas [10], Cole [11] and Mei [12]. Ertekin et al. [13] reported analytical results using the
Green–Naghdi theory as well as experimental results. In a recent study, Cao et al. [14]
presented numerical computations of two-dimensional solitary waves generated by moving
disturbances using a desingularized boundary integral method.

In this paper, the free-surface flow over a bottom obstruction is studied numerically. Unlike
the previous studies, the problem is solved in the time domain. Transient, fully non-linear
computations were performed using a mixed Eulerian–Lagrangian formulation. Unlike the

Figure 1. The steady state flow regimes.
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Boussinesq or the KdV formulations that are restricted to cases where the velocity varies
slowly with the depth, the present numerical computations can handle arbitrary velocity
variations with depth. A numerical towing tank with open boundary conditions on the
upstream and downstream vertical boundaries has been developed to perform this study. The
computer simulation ‘tows’ the semi-circular bottom obstruction from rest to a steady Froude
number. The program determines the free-surface elevation, calculates the force coefficients,
and determines the energy in the tank at each time step. The data for the response of the
free-surface is translated to a co-ordinate frame moving with the structure to show how the
free-surface develops over time. In addition to computing the upstream solitary waves, which
confirm the findings of the approximate theories, this procedure allows the simulation of wave
breaking.

A parametric study was performed for a range of values of the Froude number up to 2.5 and
non-dimensional obstacle heights, a up to 0.9. The boundary line separating the breaking and
non-breaking wave regimes was obtained. When wave breaking does not occur, three distinct
flow regimes were identified: subcritical, transcritical and supercritical. When breaking occurs
it may be of any type: spilling, plunging or surging. In addition, for a range of values of the
Froude number close to 1, the upstream solitary waves break. A systematic study was
undertaken to define the boundaries of each type of breaking and non-breaking pattern. In
addition, the time histories of the drag and lift coefficients, as well as the free-surface elevation,
were obtained. Several features of the fluid flow were very different than what was predicted
by the steady flow models. To the authors knowledge, while there have been quite a few steady
state studies of this problem, this is the first complete study of this problem in the time
domain.

2. TWO-DIMENSIONAL FLUID FLOW PARAMETRIC STUDY

2.1. Mathematical formulation

The unsteady, two-dimensional potential flow of an inviscid, incompressible fluid induced by
a bottom obstacle moving at a constant speed U along the fluid bottom is analyzed. Under the
usual assumptions of a two-dimensional, inviscid, irrotational flow, the problem may be
described by a velocity potential f and a streamfunction c. A Cartesian x–y system is defined
with y positive upward and the x-axis coinciding with the undisturbed free-surface. Non-di-
mensional variables are chosen so that the initial fluid depth, the acceleration of gravity and
the fluid density are equal to one. In the fluid domain R, the velocity potential f must satisfy
the Laplace equation:

92f=0. (1)

On the free-surface CF, the kinematic boundary conditions are

Dx
Dt

=
(f

(x
and

Dy
Dt

=
(f

(y
(2)

and the dynamic free-surface condition is given by the Bernoulli equation:

Df

Dt
= −h+

(9f)2

2
, (3)
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where D is the substantial derivative, x and y are the co-ordinates of the position of a fluid
particle, and h is the free-surface elevation.

On the bottom obstacle surface CS, the fluid flow satisfies the no-penetration condition:

(f

(n
= −UBn1, (4)

where UB is the velocity of the obstacle, and n1 is the x-component of the unit normal to the
surface.

On the flat bottom CB, one has

(f

(n
=0. (5)

The complex variable z=x+ iy and the complex velocity potential, b (b(z)=f(z)+ ic(z)),
are introduced. Since b is analytical in the fluid domain, it satisfies the Cauchy integral
theorem:7

C

b(z)
(z−zk)

dz=0 for zk outside the fluid domain (6a)

7
C

b(z)
(z−zk)

dz= − iakb(zk) for zk on the fluid boundary (6b)

7
C

b(z)
(z−zk)

dz=2pib(zk) for zk inside the fluid domain (6c)

where the contour C consists of the free-surface CF, the bottom CB, the obstacle surface CS

and the upstream and downstream boundaries. The contour C is traversed such that the region
R always lies to its left and ak is the angle between two elements adjacent to zk on the contour.
For a smooth contour ak= −p.

A mixed Eulerian–Lagrangian formulation is employed to solve the boundary value
problem (1)–(5). This method has been used very successfully to predict a variety of non-linear
wave phenomena by a number of investigators (Longuet-Higgins and Cokelet [15], Vinje and
Brevig [16], Lin et al. [17], Cointe [18], Muthedath [19]). This method involves an Eulerian and
a Lagrangian step. At each instant of time, the integral equation (6b) is solved numerically (the
Eulerian step). On some portions of the boundary 8 is known, while on others c is known. On
the free-surface 8 is given by Equation (3), while on the flat bottom c is zero and on the
bottom obstacle surface c is given by Equation (4). After solving the boundary value problem
at each time step, the free-surface conditions (2) and (3) are stepped forward in time to update
the positions and the values of the velocity potential of particles of fixed identity (the
Lagrangian step).

2.1.1. Numerical implementation. The boundary C is divided into elements (panels). Figure 2
shows the layout of the tank and boundary elements. Within each panel the complex potential
b(z) is assumed to vary linearly with z. This can be expressed as:

b(z)=
z−zj

zj−1−zj

bj−1+
z−zj−1

z−zj−1

bj. (7)

This approximation of b(z) reduces the problem of finding a continuous potential to
determining the unknown nodal values bj. These are found by collocation, i.e. by satisfying the
integral equation (6b) at the panel vertices.
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Figure 2. Numerical towing tank layout.

Detailed accuracy and convergence tests were carried out to determine the numerical tank
length, the panel arrangement and the time step size for the numerical simulations. After trial
and error, the tank length was chosen equal to 75 times the depth. A total of 508 panels are
used for the simulations presented here; 299 panels are used on the free-surface. There are five
panels on each of the vertical ends, 179 panels make up the flat bottom boundary and are
arranged so that 90 panels are to the left of the obstruction and 89 are to the right of the
obstruction. The remaining 20 panels define the surface of the obstruction.

The obstruction is translated towards the left end of the tank, in the negative x-direction. As
the obstacle moves, the flat bottom segments to either side change in length accordingly. To
maintain equal panel lengths over each of these segments, the nodes are redistributed at each
time step. The nodes on the vertical boundaries are also redistributed at each time step to
retain equal panel lengths.

Time stepping of the boundary value problem is performed by Hamming’s fourth-order
predictor–corrector method. A Runge–Kutta fourth-order method is employed for the first
four time steps to provide the initial data for use in Hamming’s method. A non-dimensional
time step of 0.05 is used. The structure is started from rest with a velocity ramp. During this
acceleration phase, the velocity is gradually increased in a linear fashion to its final value. It
was found that a velocity increase of 0.05 Fn per time step provides a smooth start-up.

Nodes on the free-surface are smoothed every five time steps using a fifth-order smoothing
formula developed by Longuet-Higgins and Cokelet [15]:

ȳi=
1
16

(−yi−2+4yi−1+10yi+4yi+1−yi+2), (8)

where the subscript i indicates the ith node, i−1 is the previous node and so forth. Smoothing
is necessary to suppress short wave, saw-tooth instabilities that are related to numerical error.
Such instabilities occur mostly in the case of breaking waves where the local wave steepness is
large. This formula works very well and suppressed all saw-tooth instabilities seen in this
study. No adverse effects of smoothing, such as the introduction of numerical damping or
dissipation to the numerical solution, were observed.
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2.1.2. Far-field boundary conditions. A satisfactory treatment of the upstream and down-
stream boundaries is of fundamental importance to the success of the numerical simulations.
The early studies of non-linear breaking waves assumed spatial periodicity in x, this scheme,
however, breaks down at large times. In the simulations of Zhu and Zhang [7], rigid-wall
boundary conditions were imposed at the upstream and downstream boundaries. As a result,
they were unable to carry out numerical simulations of the problem in the subcritical and
transcritical regions Boundary conditions allowing the waves to leave the computational
domain without any reflection are of great interest and have generated a lot of literature. No
general method has yet been proposed for the radiation of fully non-linear waves. Examples of
some very recent studies include Grilli and Horrillo [20] and Van Dongeren and Svendsen [21].
In this work, Sommerfeld radiation conditions are imposed both at the upstream and
downstream boundaries in a manner similar to what has been used in other problems (Orlanski
[22]), i.e. one requires:

(c

(t
9c
(c

(x
=0, (9)

where c is the local wave velocity and the + and − signs apply to the downstream and
upstream boundaries respectively. These conditions make the upstream and downstream
boundaries transparent to all linear or weakly non-linear waves of velocity c, thus eliminating
reflections. The local wave velocity c in the general case is unknown. In the present study, c
is set equal to the phase velocity (gh)1/2=1 (unit depth and gravitational acceleration have
been assumed). Some authors (Han et al. [23]) suggested a numerical method of calculating c.
This numerical method involves adding a column of points just inside the upstream and
downstream boundaries. Then a finite difference scheme is employed to find the spatial and
temporal derivatives of b(z) and Equation (9) is used to give the velocity c. The authors tested
this scheme using both first- and second-order difference schemes to approximate the deriva-
tives of b(z) but found that the simple choice of c= (gh)1/2 is superior and reduces the reflected
waves to a minimum.

The numerical method used to implement Equation (9) involves adding a column of points
just inside the upstream and downstream boundaries. Then a finite difference scheme is
employed to find the spatial and temporal derivatives of c(z). For the time derivative, a
backward difference scheme was used. For the spatial derivative, a forward difference scheme
was used. This gives:

c(xu, yu, t)−c(xu, yu, t−Dt)
Dt

+c
c(xu+Dx, yu, t−Dt)−c(xu, yu, t−Dt)

Dx
=0.

Rearranging to determine the nodal value of c(xu, yu, t),

c(xu, yu, t)=c(xu, yu, t−Dt)−c
Dt
Dx

[c(xu+Dx, t−Dt)−c(xu, yu, t−Dt)], (10)

where xu, yu are the co-ordinates of a node on the upstream boundary (xu=0), t is the current
time in the simulation, Dt is the time step interval and Dx is the distance of the additional
points from the upstream boundary. The value of Dx used was 5 times the upstream depth. At
each time step (t−Dt) after solving for the value of c on the boundary nodes, the value of c

on the interior points, c(xu+Dx, yu, t−Dt) is determined using Equation (6c). Then Equation
(10) is used to update the value of c(xu, yu, t) at the nodes making up the upstream boundary
at each time step. As an example, Figure 3 shows the free-surface profile for a non-dimensional
obstacle height of 0.2 and a Froude number of 0.1. Both cases of open boundary conditions
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Figure 3. Comparison of the results with and without open boundary conditions at the vertical boundaries of the
towing tank.
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and rigid-wall conditions at the upstream and downstream boundaries are shown. Free-surface
profiles at different time steps are shown (the vertical axis Y represents time). As seen in the
figure, although this open boundary condition introduces some slight disturbances on the
free-surface close to the boundary, it does prevent any significant reflections from affecting the
results.

2.1.3. Motion of the obstacle. In the towing tank simulator, the obstacle is always towed
towards the left, in the negative x-direction. The structure is started from rest with a velocity
ramp where the velocity is gradually increased in a linear fashion to its final value. Careful
inspection of the results for the free-surface profiles given here reveals that there are a few
start-up transient waves. These transient waves are generated early in the test runs and quickly
move off downstream. It was found that these transient waves do not adversely affect the
results due to the long length of time for them to reach the moving obstruction and it’s
associated wave train.

2.1.4. Calculation of the forces. The pressure coefficient over the surface of the structure is
found using the Bernoulli equation:

CP= −
(8

(t
−

V2

2
− (y−h). (11)

In order to evaluate the time derivative of the velocity potential 8t on the structure, the
authors observed that the time derivative of the complex velocity potential bt is analytical in
the fluid domain. Therefore, at each time step, in a manner similar to the b problem, Equation
(6b) is solved for the unknown values of bt. When solving for the time derivative bt, on some
of the boundaries 8t is known, while on others ct is known, similar to the b problem. On the
free-surface 8t is given by Equation (3) as:

(f

(t
= −h−

(9f)2

2
.

On the far-field boundaries ct is given by Equation (9). On the flat bottom, ct is zero, while
on the structure, a divided difference formula is used to evaluate ct.

The lift coefficient acting on the semicircular structure is simply the integral of the pressure
over the surface CS of the structure:

CL= −
&

C S

CP dx. (12)

Applying the trapezoidal rule to the integral gives:

CL= %
nstr

i=1

(CPi
+CPi+1

)
2

(xi+1−xi), (13)

where nstr is the number of nodes on the obstacle.
The use of the Bernoulli equation in a similar manner to find the drag has been found to

produce inaccuracies due to cancellation of the pressures on opposite sides of the structure. A
more accurate equation for the steady state pressure coefficient was derived under the
assumption that for a given point on the obstacle, the value of the velocity potential does not
change with time. Observation of the numerical results confirmed that this is a valid
assumption after the first few time steps. This assumption implies:
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(8

(t
)
m

=
(8

(t
−
(8

(x
UB:0

or

(8

(x
=

1
UB

(8

(t
, (14)

where the subscript m refers to a co-ordinate frame moving with the obstacle. In view of the
no-penetration condition (4), one may write:

0= −UB cos q+
(8

(x
cos q+

(8

(y
sin q

or

(8

(y
=

UB

tan q
−
(8

(x
1

tan q
. (15)

After substituting (14) and (15) into the Bernoulli equation, and canceling terms due to the
symmetry of the obstacle, the following equation for the pressure coefficient can be found:

CP=
(8

(t
� 1

(tan q)2−1
n

−

�(8
(t
�2

2·UB
2 ·(sin q)2−

UB
2

2·(tan q)2+h, (16)

where q goes from zero at the leading edge of the structure to p at the trailing edge of the
structure, UB is the upstream Froude number, and h is the depth. Equation (16) is singular
when q equals zero or p. For these points, the pressure coefficient is given as:

CP=
UB

2

2
+h. (17)

The drag coefficient at steady state may be found by taking the following integral over the
surface of the obstacle:

Cd=
& p

q=0

CP
�

q,
(8

(t
�

dy. (18)

Applying the trapezoidal rule to the integral yields:

Cd= %
nstr

i=1

(CPi
+CPi+1

)
2

(yi+1−yi). (19)

2.1.5. Calculation of the energy in the tank. The total non-dimensional potential energy in the
tank per unit tank width is found by taking the following integral over the free surface CF:

PE=
1
2
&

C F

y2 ·ny ·ds=
1
2
&

C F

y2 ·dx. (20)

This integral may be discretized to give the following finite sum:

PE=
1
2

%
ni−1

i=1

(xi−xi+1)×
�yi+yi+1

2
�2

, (21)

where n1 is the total number of nodes on the free-surface. The total non-dimensional kinetic
energy per unit width in the tank can be found using the following formula developed by Vinje
and Brevig [16]:
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KE=
1
2
&

C

8 ·dc. (22)

In discretized form one obtains

KE=
1
4

%
m0

i=1

(8i+8i+1)× (ci+1−ci), (23)

where m0 is the total number of nodes in the tank. The total energy in the tank is simply
the sum of the kinetic and potential energies.

The drag coefficient may also be found using the principle of energy conservation in the
tank at each time step. The drag coefficient may be calculated as follows:

Cd=
1

UB

d(KE+PE)
dt

. (24)

This method of determining the drag coefficient agrees well with the drag coefficient ob-
tained using Equation (19) for all cases confirming the accuracy of the numerical results.
As time increases, the use of Equation (24) to evaluate the drag is not very accurate due to
the loss of energy in the tank through the open boundaries.

3. NUMERICAL RESULTS

3.1. Free-surface profile

Numerical simulations were performed for values of the non-dimensional obstacle height
between 0.05 and 0.9 in 0.1 increments, each for Froude numbers of 0.05, 0.15, 0.95, 2.5,
and from 0.25 to 2.0 in 0.25 increments. This effort constitutes a total of 120 runs to map
out the response for Froude numbers up to 2.5 and obstruction heights up to 90% of the
flow depth.

Figure 4 shows the different regions of the free-surface response in the (Fn, a) parameter
space. The results can be separated into two categories depending on whether or not wave
breaking occurs. Due to the inviscid nature of the fluid dynamics formulation, the compu-
tations break down when a wave breaks. When this occurs, the run is shortened consider-
ably and no steady states are approached. When wave breaking does not occur, three
distinct flow regimes were identified: subcritical, transcritical and supercritical. When wave
breaking occurs, it may be of any type: spilling, plunging or surging. As shown in Figure 4,
surging-type breaking occurs for values of a greater than 0.7. Plunging breaking is observed
in most cases, while spilling-type breaking is confined in a narrow region close to the
subcritical and transcritical non-breaking regimes. Finally, in a small region in the transcrit-
ical regime, the upstream soliton breaks.

Figures 5–7 and Figures 9–12 show sample transient free-surface profile results. In these
plots, the free-surface profile is shown for successive time steps. Each profile line has been
displaced in the y-direction a uniform amount to give the appearance of wave motion in
three dimensions, where the third dimension represents time.

3.1.1. When wa6e breaking does not occur. When wave breaking does not occur, three
distinct flow regimes were identified: subcritical, transcritical and supercritical. The follow-
ing sections describe in detail the free-surface profile characteristics for each of the flow
regimes.
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Figure 4. Free-surface flow regimes.

3.1.1.1. Subcritical. Figure 5 shows a sample free-surface profile for the subcritical case. As
Figure 5 indicates, on the free-surface, solitary waves are generated upstream of the obstacle
and a stationary, with respect to the obstacle, wave train develops downstream. The solitary
waves are generated at a constant period while their amplitude gradually decays. As each
soliton progresses upstream, its amplitude decreases while its wavelength and speed increase.
Due to this increase in speed with time, the distance between successive crests in the train of
solitons is always increasing. As time goes on, the amplitude of the emitted solitons decays,
leaving a steady state flat free-surface profile ahead of the obstacle. As the Froude number is
increased, there is a decrease in the upstream soliton emission frequency and speed.

The stationary wave train continually produces downstream waves. Growth of the wave
train occurs at the far-downstream end. Initial small amplitude ripples form larger waves,
matching those further upstream in the wave train. Eventually, the heights and wavelengths of
these waves become steady. An oscillation is seen in the amplitude of the wave crests. As time
goes on, there appears to be a long wavelength, low amplitude downstream traveling wave
superimposed on the wave train.

3.1.1.2. Transcritical. In the transcritical regime, upstream solitary waves are periodically
generated. The flow never reaches steady state. Figure 6 is a sample free-surface profile plot for
transcritical flow. The first wave of the downstream wave train begins to move downstream.
In doing so, a flat, waveless region just downstream of the obstruction is formed. The length
of the flat region increases with the Froude number.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 43–63 (1999)
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Figure 5. Sample free-surface profile plot for the subcritical case.

Figure 6. Sample free-surface profile plot for transcritical flow.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 43–63 (1999)
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Figure 7. Sample free-surface profile plot for supercritical flow.

3.1.1.3. Supercritical. As the flow becomes supercritical, a constantly elongating trough forms
behind a precursor soliton. Figure 7 is a sample free-surface profile plot for supercritical flow.
Any initially produced waves are swept quickly downstream. In the steady state, the free-sur-
face behind the obstruction is completely flat. The depth of the flat region decreases with
increasing Froude number. In the case of very high Froude numbers, the free-surface returns
to its initial elevation downstream of the obstacle. This is the same free-surface profile as the
supercritical flow case in the steady state literature.

3.1.1.4. O6erall characteristics. Figure 8 is a plot of the height of the initial upstream advancing
soliton as a function of the non-dimensional obstacle height a for different values of the
Froude number. In each case, the height of the soliton was measured either at steady state or
when wave breaking occurred. In general, the soliton height increases with the Froude number
and the obstruction height. The only exception occurs in the transcritical regime, where
upstream breaking waves were encountered. In this region, the soliton height increases until it
eventually forms a forward breaking wave.

3.1.2. Wa6e breaking

3.1.2.1. Downstream breaking. In all cases, wave breaking occurs in the first wave downstream
of the obstruction. When wave breaking occurs, it may follow any pattern: spilling, plunging
or surging. The transition from one breaking pattern to the other is smooth.

Spilling waves develop symmetrically. The crest becomes sharper and sharper until the peak
spills to one side and the wave breaks. Plunging breakers do not form symmetrically. The crest
curls over towards the obstacle and the free-surface overturns into itself. Surging breakers are
seen as the collapse of a nearly vertical hydraulic jump.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 43–63 (1999)
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Figures 9–11 show typical free-surface profiles for spilling, plunging and surging breakers
respectively. When downstream plunging or surging wave breaking occurs, the wave breaks
towards the obstacle. The regions where each breaking-type occurs are shown in Figure 4. The
plunging-type of breaking wave dominates. As the obstruction height is increased past 0.7, the
plunging wave gradually becomes a surging wave. For subcritical Froude numbers, a thin
region where spilling breaking occurs exists close to the subcritical and transcritical non-break-
ing regimes.

3.1.2.2. Upstream breaking. Upstream breaking of the soliton occurs in a small region in the
transcritical flow regime. Figure 12 shows the evolution of the free-surface for the case of
upstream breaking. As shown in Figure 12, the upstream soliton grows in height and splits into
two solitons. The leading soliton continues to grow in height as it moves upstream, away from
the obstruction. At some distance from the obstruction it reaches a critical height and plunges
forward. This type of breaking is only seen after especially long times when compared with
downstream breaking. Non-dimensional times for this type of breaking begin at 30 and go up
to about 55. These excessively long times are in some cases too high to be achieved in the
simulation. The work performed by Zhu and Zhang [7] did not show the presence of these
waves. It is suspected that the reason for this discrepancy is that sufficiently long times were
not achieved in the numerical simulation to reveal upstream breaking.

3.2. Forces on the structure

3.2.1. Transient drag beha6ior. Figure 13 contains a plot of the drag on the structure, as a
function of time, for subcritical flow. In subcritical flow, the drag oscillates periodically before
converging to a steady state. Each of the drag maxima corresponds to the time of upstream

Figure 8. Plot of the height of the initial upstream advancing soliton as a function of the non-dimensional obstacle
height a for different values of the Froude number.
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Figure 9. Sample free-surface profile plot of a spilling-type breaking wave.

Figure 10. Sample free-surface profile plot of a plunging-type breaking wave.
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Figure 11. Sample free-surface profile plot of a surging-type breaking wave.

Figure 12. Sample free-surface profile plot of an upstream breaking wave.
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Figure 13. Plot of the lift and drag coefficients on the structure, as functions of time, for subcritical flow.

traveling soliton emission. Hence, the period of the oscillations in the drag is equal to the
soliton emission period. As mentioned earlier, this period increases as the Froude number
increases. The amplitude of these oscillations goes to zero as the height of the solitons decay
to zero. After a sufficiently long time, the drag converges to a steady state.

Also shown in Figure 13 is a plot of the (8/(t term. It is seen that this term is negligible
after the first few time steps. This verifies the validity of the assumption leading to Equation
(14).

Figure 14 contains a plot of the drag on the structure, as a function of time, for supercritical
flow. In supercritical flow, the drag goes through an initial maximum, before slowly decaying
to a steady state. No periodic oscillations are seen in the drag in the supercritical regime. When
wave breaking occurs, the transient behavior described above is simply truncated at the point
where the wave breaks.

3.2.2. Steady state drag. In the subcritical and supercritical regimes, when no wave breaking
occurs, the solution for the drag will converge to a steady state after a sufficiently long time.
In general, for very high supercritical and low subcritical Froude numbers, the drag converges
quickly. As the Froude number approaches the transcritical regime (from either side) the rate
of convergence decreases rapidly.

Figure 15 is a plot of the steady state drag as a function of non-dimensional obstacle height
for various Froude numbers. Higher obstacle heights always produce more drag than lower
ones at the same Froude number. It appears that the steady state drag is exponentially related
to the height of the obstacle. In the case of subcritical flow, the steady state drag increases with
the Froude number. For example, the steady state drag for an obstruction height that is 20%
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of the flow depth is about 23 times greater for a Froude number of 0.5 than for a Froude
number of 0.25.

In the supercritical flow regime, the steady state drag actually decreases as the Froude
number is increased. It is also possible for the drag for supercritical flow to be less than that
for subcritical flow, for equal obstruction heights. The steady state drag for a Froude number
of 1.50 is about 3.9 times greater than that for a Froude number of 2.5, at a non-dimensional
obstacle height of 0.40.

3.2.3. Transient lift beha6ior. Periodic oscillations are seen in the lift for subcritical flow.
These oscillations are about 90° out of phase with the oscillations in the drag. After a
sufficiently long time, the amplitude decays to a steady state value. Figure 13 contains a sample
plot of the lift as a function of time for subcritical flow. Note that the lift in some cases is
negative. This is due to the strong negative contribution of the hydrostatic pressure to the lift.
In subcritical flow, the hydrostatic contribution to the lift can be as much as 96% of the total.

In the supercritical flow case, the lift goes through a sharp initial maximum before decaying
to a steady state. Figure 14 is a sample plot of the lift as a function of time for supercritical
flow. In supercritical flow, the hydrostatic contribution can be as much as 55% of the total lift.

3.2.4. Steady state lift. Figure 16 is a plot of the steady state lift as a function of the structure
for various Froude numbers. In the case of supercritical flow, the steady state lift appears to
go through a maximum value at some obstruction height. The location of this maximum
appears to shift toward higher values of the obstacle height with increasing Froude number. For
subcritical flow, on the other hand, the lift always decreases with increasing obstacle height. In
all cases, the lift is higher for higher Froude numbers.

Figure 14. Plot of the lift and drag coefficients on the structure, as functions of time, for supercritical flow.
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Figure 15. Plot of the steady state drag as a function of non-dimensional obstacle height for various Froude numbers.

4. CONCLUSIONS

Extensive numerical simulations were carried out to study the non-linear free-surface flow over
a bottom obstruction in two dimensions. A mixed Eulerian–Lagrangian numerical method
was employed. The problem was solved in the time domain that allows the prediction of a
number of transient phenomena that cannot be predicted by steady flow models. Such
phenomena include the generation of upstream advancing solitary waves as well as the
simulation of wave breaking. A parametric study was performed for a range of values of the
depth-based Froude number up to 2.5 and non-dimensional obstacle heights, a, up to 0.9.
Different breaking and non-breaking flow regimes were identified. When wave breaking does
not occur, three distinct flow regimes were identified: subcritical, transcritical and supercritical.
In the subcritical case, a train of solitary waves is generated upstream of the obstacle and a
stationary, with respect to the obstacle, wave train develops downstream. In the transcritical
regime, upstream solitary waves are periodically generated. The flow never reaches steady
state. The first wave of the downstream wave train begins to move downstream. In doing so
a flat, waveless region just downstream of the obstruction is formed. The length of the flat
region increases with the Froude number. As the flow becomes supercritical, a constantly
elongating trough forms behind a precursor soliton. Any initially produced waves are swept
quickly downstream. In the steady state, the free-surface behind the obstruction is completely
flat. The depth of the flat region decreases with increasing Froude number. In the case of very
high Froude numbers, the free-surface returns to its initial elevation downstream of the
obstacle.
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Figure 16. Plot of the steady state lift as a function of the structure for various Froude numbers.

When breaking occurs it may be of any type: spilling, plunging or surging. In addition, for
values of the Froude number close to 1, the upstream solitary waves break. A systematic study
was undertaken to define the boundaries of each type of flow pattern and to determine the
drag and lift coefficients, free-surface profile characteristics and transient behavior.
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